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Abstract We show that computing the cceflicien& of the Taylor expansion of the solution of 
the off-equilibrium dynamical equations charactedzing models with quenched disorder is a very 
effective way to understand the long-time asymptotic behaviour. We study the p = 3 spherical 
spin-glass model, and we compute the asymptotic enzrgy (in lhe critical region and down to 
T = 0) and the coefficients of the time decay of the energy. 

It has been strongly stressed in recent years that the non-equilibrium dynamics of glassy 
systems displays very interesting phenomena. One of the most remarkable phenomena is 
aging [l]. The dependence on time of measurable quantities does not vanish when time 
goes to CO, and a true equilibrium is never reached. 

Let us give a simple example of an aging behaviour. In spin systems the spin-spin 
correlation function can be defined as 

We can consider a system that has been kept at very high T for times smaller than t = 0 
and has been quenched to the measurement temperature G at time f = 0. We wait a time tw 
after such a quenching, and we measure spin-spin correlations starting at r,. The relevant 
point is that, in contrast to equilibrating systems, for large r,., and t the dependence of C on 
the waiting time tw does not disappear. In the simplest cases it is found that for t / tw # 1, 
C(t,, t )  can be written as 

where f is not a constant function. Even for asymptotically large times the time translational 
invariance of the correlation functions is never recovered. 

Aging is quite a widespread phenomenon in short-range models. Aging in disordered 
systems has the interesting peculiarity of already being present in the' mean-field 
approximation. It is obvious that we can have true, complete aging only in an infinite 
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system. In such a c a e  one can write a closed set of dynamical equations [2,3] which 
are the appropriate generalization of the famous mode-mode coupling equation for glasses. 
Unfortunately these equations a s  coupled integral equations in two variables and the analytic 
solutions found so far [3-6], although they give a coherent picture of aging, do not allow 
the study of the time dependence of the different quantities. Hence, it is highly desirable 
to have efficient methods to integrate these equations numerically. 

An example of these equations for the spherical spin model with a p-spin interaction 
in the case p = 3 is given by a set of nonlinear integro-differential equations [Z, 31, which 
are obtained by transforming equations (14) and (15) back to their constrained form (see 
the later discussion). The same equations also appear in the off-equilibrium dynamics of 
the Amit-Roginsky model [7] where, although quenched disorder is absent [8]. the mode 
coupling approximation gives exact reiults. 

It is possible to study such equations numerically [4], but it is rather difficult to study 
the solution for large values of time. The main problem is the amount of information which 
needs to be stored, since if the discretization step in time is E the quantity of numbers 
needed to code the correlation function is Lz where L = t / e .  

The dynamical equations can be derived starting from the usual Langevin equation for 
the p-spin model: 

1.N 

i2+<i, 
bii(t) = - ~ ( t ) u i ( t )  + ~ i , i , . . . . . i , ~ i ~ a , . . . u i ~ ( s  + v i a )  (3) 

where the J couplings are quenched Gaussian random variables, and 7 is a white noise with 
covariance 2T.  For all times f ,  the value of p(t) is chosen so as to implement the spherical 
constraint 

N 
z u j ( t ) *  = N. (4) 
i=l 

For mainly technical purposes, and some aesthetic considerations, we find it more suitable to 
switch to a formulation where the spins si(t) are unconstrained. All that we have performed 
here can be repeated, with essentially the same degree of complexity, in the formulation 
where the spins are the original constrained variables. 

If we consider the transformation 

si@) =N(t)u&) (5) 
with 

the dynamical equations become 

Defining an effective time r from the relation 

dt = NP-' d r  

we obtain 
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&(r)fj(r') = 2TNP(s)8(r - t')&,,. 

T&(t) TNP(r)  (11) 
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where the are Gaussian noise with zero mean and variance: 

(10) 
The unconstrained system of the s variables is kept at a temperature 

in order to keep the original constrained variables at a fixed, time-independent temperature 
T. 

From equations (9) and (IO), after standard manipulations we obtain a set of closed 
dynamical equations for the correlation function 

C(s ,  I?) = (Si(Z)S&')) (12) 
and for the response function 

For r > t'.they are, respectively, 

-C(r, 5') = i p ( p  - 1) 

(14) 

I' a 
a t  dr" Cp-'(t, t")R(t, a")C(r", r') 

T' 

+ i p  1 dr" CP-'(r, r")R(r', r") 

1) l: (1.5) -R(t, r') = f p ( p  - dt"CP-2(r, r")R(r, r")R(r", 7'). 

'l (16) --C(t, r )  =.?p dr"CP-'(z, t")R(r, t") + TC(r, T)~" 

where we have used the fact that 

N(r) = m. (17) 
We have rewritten our constrained system as an unconstrained system, kept at a time- 

dependent temperature Te&). We stress that this transformation has been allowed by 
the fact that our Hamiltonian is homogeneous. We will discuss the system in such an 
unconstrained formulation. We again remind the reader that all our results can also be 
easily obtained in the constrained formalism, where one can also deal with non-homogeneous 
Hamiltonians as in [4]. 

The method we suggest and employ here to study the asymptotic behaviour of the 
dynamic equations (14) and (15) is based on computing the coefficients of the Taylor 
expansion of C and R, defined by 

and 
a 
ar 

l a  
z a t  

For equal times, R = 1, and C verifies that 

C ( S , T ~ )  = c c k , j + j  ~ ( q , q )  =Crk.jr:ri .  (18) 
k . j  k.1 

We always assume that t1 > r2. Equations'(14) and (15) transform into two coupled iterative 
relations for the Taylor coefficients c and r .  Knowing the lowa-order coefficients, we can 
determine the higher-order coefficients. The initial conditions are CO,O = 1 and ro.o,= 1. We 
determine the coefficients ck.1 and rk,, in turn with i + j = w for w = 2,3,4,. . .. It takes 
a few hours on a RISC workstation to go up to w = 100 (we analyse coefficients going up 
to order 48, see later). We repeat the procedure for different values~of the temperature T 
the complexity of the computation increases as w3.  
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In this paper, as an example, we give the results of the computation of the energy, 
which happen to be in agreement with the thmry [2,31. In a forthcoming publication 
we will address the problem of verifying more striking issues of the theory, such as the 
asymptotic violation of time translation invariance and of the fluctuation dissipation theorem. 

We start the analysis from the Taylor expansion for C(T. 5).  If we define 

we have that 

In the self-explanatory formalism that we use later, we will be working on the Taylor 
coefficients 

Wd’ (5) Ik. (21) 
We have computed the coefficients of the series expansions which follow by using a simple 
progam written in C-language. We have first computed the coefficients 

The coefficients of /I as a function of the unconstrained time r are easily computed as 

and for the constrained time f as a function of the unconstrained time t 

By inverting and composing these series expansions, we eventually obtain 

b ( t ) l k  (25) 
which is basically the energy as a function of the constrained time t. It is useful to define 
the Taylor expansion of the function 

Under the assumption that, for f + CO, 

p(t) --z p- - At-’ (27) 
one has that 

p ( t )  + -(or + 1). (28) 
Different technipes may be used to extrapolate the function p ( t )  to t = 00. After a 

series of tests we have found it convenient to use Pad& approximants. We have used the 
diagonal Padg approximants of order 48 to check this behaviourt. We compute 01 from 
,8(i), with a high enough value of T. Using our best estimate for U, we compute p(i) and 
the extrapolated value p(? = 00). Once p(f) is known, the energy E(t )  is obtained by the 
simple relation p(t) = T - 3E(t)  121. 

t Lower-order Pad6 approximans have been used to check stability. 
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Figure 1. Theoretical result for the asymptotic dynamic energy E ( T )  (solid w e )  and our 
values (full circles). The dynamic critical temperature is TD = f. In the high T region 
E(T) = 1 /T .  

Figure 2. CI as a function of T. In these units the dynamic transition temperature is TD = i. 
The w e  is used for presenting the data, and does not have any physical meaning such as a 
best fit. 

Let us start with a brief summary of our results. Our method confirms that the asymptotic 
dynamic energy E ( T )  is correctly predicted by the theory. We find, in addition, the 
remarkable result that the value d the asymptotic dynamic energy of the dynamics at 
zero temperature is the smooth limit of the values for T # 0. This does not seem to be true 
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in other spin-glass systems, as for example the SK model [9]. We also obtain a very good 
estimate for the exponent a! for T < TD = 0.5. These results have been obtained with very 
small computational effort. 

In figure 1 we compare the theoretical result for the asymptotic value of the dynamic 
energy to our findings. Here the critical temperature is obtained by solving the equation 

(29) 2 1 

TO 

--Cl + 4% -2q)) .  

T q D ( 1  -qD)' = 1 40 ~ T D )  = 2 

which gives TD = 1, and the dynamic energy is defined as 

(30) 
1 
T 

The ageement is very good at low T .  The convergence (in time) becomes slower when 
approaching the critical point; exactly at TD we have the highest discrepancy from the exact 
value (of more or less 2%). In the high T phase the convergence to the asymptotic result 
becomes very fast again. 

In figure 2 we plot the exponent (Y that we have estimated from Pad& approximants as 
a function of 7'. We do not have a precise estimate of the errors (this is a known drawback 
of the Pad& approach), but judging from the dispersion of different diagonal approximants 
they appear to be of the order of magnitude of a few per cent. If we try to estimate a! 
for T z To, in the high-temperature phase, where we expect the correlations to decay 
exponentially, we find a value that starts to increase with T and dramatically explodes for 
high T. The relatively large discrepancy of the extxapolated energy value close to TD makes 
us suspicious about the possible presence of tricky confluent singularities. Obviously such 
a problem would reflect itself in the value we are estimating for U. 

Figure 3. Result for the asymptotic dynamic energy E(t )  from the direct numerical integration 
of the dynamical equations (solid curve) and our mull as a function of time (dotted curve). 
Here T = T D J ~ ,  i.e. T = 0.125 with our normalization. 

The fact that our method works very well is also clear from figure 3, where we compare 
the results of our expansion to the result from the direct numerical integration of the 
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dynamical equations. We have a perfect matching, but, as we discussed, the numerical 
integration is limited to small times, and it is difficult to extract reliable asymptotic values 
for the coefficients. 

Summing up, we have seen that the numerical integration of the off-equilibrium mode 
coupling equations can effectively be performed by computing the coefficients of the Taylor~ 
expansion of the correlation and the response functions. As an example of an application 
we have computed the energy as a function of time and temperature. In the low-temperature 
phase (and down to zero temperature) we find a power-law decay to the value predicted by 
mean-field theory. 
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